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Abstract

In the past decade, there has been a lot of work concerning the localization problem. It arises
in many contexts ranging from wireless sensor networks to social networks. In this report, we
present a Maximum-Likelihood approach towards solving the localization problem, given only
the connectivity information between the comprising nodes. Though an explicit closed-form
solution is not obtained, we present a gradient-descent based approach. We also describe the
Fisher Information Matrix (FIM) for this estimation problem and characterize its singularity.

1 Introduction
In the past decade, there has been a lot of work around solving the localization problem [1-4]. This
is in part due to the unprecedented surge in the application of wireless sensor networks (WSNs) in
a wide range of fields. In a lot of WSN applications, particularly when used in monitoring, there
is a need for knowing the location of a sensor node, without knowing which the data obtained
from it will be irrelevant. There are other contexts in which the localization arises naturally, viz.,
locating people who are in a social network, given only the information about whether or not they
are connected to each other on the social network.

Broadly speaking, there are two variants in localization problems. One of them is known as the
“range-based" class and the other is known as the “range-free” class. In the “range-based” class, we
are required to estimate the positions of nodes, given information about the absolute point-to-point
distances between them. In the “range-free” class, there is no assumption about the availability
of such data and mere connectivity information between the constituent nodes is provided. In
the first of above illustrated examples (WSNs), it is possible to obtain distance measurements
between constituent nodes and so, “range-based” algorithms can be applied. However, in the latter
example (social networks), it is more natural to use the connectivity information between people
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for localization; so, “range-free” class of algorithms are more applicable. Drawing motivation from
this, in this report, we concentrate on the “range-free” class.

It should be noted that the locations of each of the nodes can be estimated only upto a rigid
transformation of the actual locations. This is because the relative information (distance) between
the nodes remains invariant under a rigid transformation. Due to this reason, for complete location
estimation, there is a need for the presence of nodes referred to as “anchors”, whose locations are
pre-determined.

The remainder of the report is organized as follows. Section 2 briefly mentions prior work on
the localization problem. Section 3 formally introduces the problem description and elucidates
our approach towards localization using Maximum-likelihood Estimation (MLE). In Section 4, we
illustrate the results obtained from MLE localization. Section 5 concludes the report.

2 Prior Work
In [1], bounds are characterized on the performance of the MDS-MAP algorithm. MDS-MAP is a
“range-free” algorithm that essentially uses the Djikstra’s shortest paths algorithm followed by the
MDS (Multi-dimensional Scaling) algorithm for location estimation. In [2], an SDP-based algorithm
(for the “range-based" class) is introduced and performance bounds are characterized. In [3], the
authors adopt an SDP-relaxation based method for localization.

In [4], the authors use a maximum-likelihood approach, but they limit their estimation to relative-
location estimation, and not absolute location of each of the nodes. In contrast, the current work
addresses the problem of finding the locations of each node (upto a rigid transformation). Apart
from [4], there has not been much exploration into applying the maximum-likelihood approach to
the localization problem.

3 Maximum Likelihood Approach
Given a set of “n” nodes (distributed uniformly at random) in Rd, the range-free localization problem
requires to estimate the locations of each of the points, using a set of pairwise measurements Yij
with (i, j) ∈ {1, 2...n} × {1, 2...n}. We use the following noisy model for the p.d.f. of Yij (Bernoulli
random variable). Let X1, X2...Xn be the ‘n’ nodes, whose locations are to be estimated. Then, we
model

P (Yij = 1) =
1

(1 + exp(β(‖Xi −Xj‖ − k0))
= φ(say)

where β and k0 are real scalars.
Based on the observations Yij, we wish to estimate the location parameter vector given as

(X1, ..., Xn). It is also a standard procedure to describe them as a matrix X ∈ Rn×d, whose rows
comprise of the individual node locations. The likelihood of the observations (assuming indepen-
dence between each observation) conditioned on the parameters can be expressed as,

P (Y/X) =
∏
i,j

P (Yij/X) =
∏
i,j

φYij ∗ (1− φ)1−Yij

We wish to maximize the likelihood function, which is equivalent to minimizing the negative of
the log-likelihood function (say J). We can express J as (after eliminating terms independent of
Xi’s)

J = β ∗
∑
i,j

Yij ∗ ‖Xi −Xj‖+
∑
i,j

log(1 + exp(−β(‖Xi −Xj‖ − k0))
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Since we need to minimize J, we first take its derivative with respect to each of the parameters.

∂J

∂Xw

= β∗
n∑

i=1,i 6=w

(Yiw+Ywi)∗
Xw −Xi

‖Xw −Xi‖
−2∗β

n∑
i=1,i 6=w

1

1 + exp(β(‖Xw −Xi‖ − k0)
∗ Xw −Xi

‖Xw −Xi‖
(1)

for w = 1, 2, ..n.
Notice that our analysis allows for Yij and Yji to be potentially different. Intuitively speaking, if

one of these observations is ‘0’ and the other is ‘1’, then there is a very good chance that the value
‖Xi − Xj‖ is around k0. This is due to the nature of the sigmoid function, which arises from the
chosen Bernoulli distribution.

Since there is no known closed-form solution to the parametersXi in (1), we employ the Gradient-
Descent method to estimate the parameter vector (X1, ..., Xn).

3.1 Initialization of Gradient Descent

The key issue in using gradient descent is the question concerning the initialization of the parame-
ters X1, ..., Xn. We now propose the following simple algorithm to initialize the matrix Xinit.

input : Observations Yij for (i, j) ∈ {1, 2...n}x{1, 2...n}, k0
output: Initializations Xi for i = 1, ..., n, represented as a matrix Xinit

for i← 1 to n do
for j ← 1 to n do

if XOR(Yij, Yji) = 1 then
R(i, j)← k0;
R(j, i)← k0;

end
if AND(Yij, Yji) = 1 then

R(i, j)← k0/2;
R(j, i)← k0/2;

end
if AND(Yij, Yji) = 0 then

R(i, j)← 1;
R(j, i)← 1;

end
end

end
Xinit =MDS(R);

Algorithm 1: Initialization method for Gradient Descent

The above algorithm can be derived by regarding dij = ‖xi − Xj‖ as the parameter to be
estimated and taking the derivative of J w.r.t. dij. By following this approach, if both Yij & Yji
are ‘1’, we get dij to be ‘0’ and if both Yij & Yji are ‘0’, we get dij to be ‘0’. If exactly one of Yij or
Yji is ‘1’, we get dij = k0.

3.2 Fisher Information Matrix

Denote our parameter vector as θ = (X1, ..., Xn). Then the Fisher Information Matrix (FIM) is a
matrix F ∈ Rnd×nd. We can view F as an n× n block matrix, with each block of size d× d. Then,
the (w, k)th block in the matrix F can be expressed as,
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Fwk = EY (
∂

∂Xw

(
∂J

∂Xk

))

(since J is the negative of log-likelihood function)
After simplification, we arrive at the following,

Fwk = −
β2

1 + cosh(β(‖Xw −Xk‖ − k0))
× (Xw −Xk) ∗ (Xw −Xk)

T

‖Xw −Xk‖2
;w 6= k

Fww =
n∑

i=1,i 6=w

β2

1 + cosh(β(‖Xw −Xi‖ − k0))
× (Xw −Xi) ∗ (Xw −Xi)

T

‖Xw −Xi‖2

3.2.1 1-Dimensional Case

For simplicity, let us consider the case when n = 2 (we later generalize). The FIM becomes,

F =

(
−b12 b12
b12 −b12

)
where bwk = −1 ∗ β2

1+cosh(β(‖Xw−Xk‖−k0))
(this definition of bwk is used throughout the report)

Clearly, the eigenvalues of F are ‘0’ and ‘k0’, making it a singular matrix.
For general ‘n’, the matrix F can be given as,

F =



−
n∑

i=1,i 6=1

b1i b12 · · · b1n

b21 −
n∑

i=1,i 6=2

b2i · · · b2n

...
... . . . ...

bn1 bn2 · · · −
n∑

i=1,i 6=n
bni


We can see that all rows and all columns in F sum to ‘0’. To evaluate the eigenvalues, we find

λ for which |det(F − λI)| = 0

|det(F − λI)| = 0

=⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
n∑

k=1,k 6=1

b1k − λ b12 · · · b1n

b21 −
n∑

k=1,k 6=2

b2k − λ · · · b2n

...
... . . . ...

bn1 bn2 · · · −
n∑

k=1,k 6=n
bnk − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

We do the following Gaussian-elimination step: R1 → R1 +R2 + ...+Rn, where Ri denotes the
ith row. We then obtain,

=⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ −λ · · · −λ
b21 −

n∑
k=1,k 6=2

b2k − λ · · · b2n

...
... . . . ...

bn1 bn2 · · · −
n∑

k=1,k 6=n
bnk − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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=⇒ λ ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

b21 −
n∑

k=1,k 6=2

b2k − λ · · · b2n

...
... . . . ...

bn1 bn2 · · · −
n∑

k=1,k 6=n
bnk − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Hence, we see that again λ = 0 is an eigenvalue, which means F is a singular matrix.

3.2.2 2-Dimensional Case

Like before, first consider the case when n = 2. The matrix F will be now comprised of four 2× 2
block matrices.

F =

(
−F12 F12

F12 −F12

)
where, Fwk = bwk ∗ 1

1+m2
wk

(
−1 mwk

mwk −m2
wk

)
Here, mwk is the slope of line joining Xw and Xk. From this, it is clear that F12 is a singular
matrix. Thereby, F is a singular matrix too.

Now, let us consider the case for general ‘n’. The FIM for this case can be expressed as,

F =



−
n∑

k=1,k 6=1

F1k F12 · · · F1n

F21 −
n∑

k=1,k 6=2

F2k · · · F2n

...
... . . . ...

Fn1 Fn2 · · · −
n∑

k=1,k 6=n
Fnk



3.2.3 n-Dimensional Case

In this case, as observed before, we will have n2 blocks, each of size d × d. Let Fij,wk denote the
(i, j)th element in the (w, k)th block matrix. Then,

Fij,wk =
1

bwk
∗ 1

mij,wk +mji,wk +
d∑

l=1;l 6=i,j
mli,wk ∗mlj,wk

;w 6= k

Fij,ww = −
n∑

k=1,k 6=w

1

bwk
∗ 1

mij,wk +mji,wk +
d∑

l=1;l 6=i,j
mli,wk ∗mlj,wk

where,

mij,wk =
X

(j)
k −X

(j)
w

X
(i)
k −X

(i)
w

s(q) denotes the qth component in a vector s.
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(a) (b)

Figure 1: Error as function of ‘n’ and G-D iterations (a)k0 = 0.01 (b)k0 = 0.03

(a) (b)

Figure 2: Error as function of ‘n’ and G-D iterations (a)k0 = 0.05 (b)k0 = 0.07

4 Experimental Results
In this section, we describe our experimental results considering the points X1, X2, ..., Xn (dis-
tributed uniformly at random) from a unit square. The above elucidated gradient descent-based
MLE has been implemented for a range of values of ‘k0’ and ‘n’, the resulting plots are illustrated
in Figures 1-10 (β, which governs the rate at which the sigmoid dies to ‘0’/rises to ‘1’, is chosen to
be ‘5’). We compute the Minimum Mean-Squared error metric between the actual locations given
by the matrix ‘X’ and the estimated matrix ‘X̂’ as,

MMSE = min
t∈R2,R∈O(2)

1

n

n∑
i=1

‖Xi − t−RX̂i‖2

where t ∈ R2 and R ∈ O(2), the set of orthogonal matrices ∈ R2×2, are chosen as the optimal rigid
transformation between X and X̂.

For a particular ‘k0’, we see that there exists a range of ‘n’ values for which G-D converges. We
can further see that as ‘k0’ increases upto 0.5, there is a decrease in the upper limiting ‘n’ value for
convergence. When k0 is increased beyond 0.5, the upper limiting ‘n’ value for convergence shows an
increasing behavior. To confirm that this is indeed the case, we carry out a re-run of the experiment
and plot the resulting curves, which again depict this ‘decreasing upto k0 = 0.5 and then increasing’
behavior of the upper limiting value of ‘n’ for convergence.
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(a) (b)

Figure 3: Error as function of ‘n’ and G-D iterations (a)k0 = 0.09 (b)k0 = 0.1

(a) (b)

Figure 4: Error as function of ‘n’ and G-D iterations (a)k0 = 0.3 (b)k0 = 0.5

5 Conclusion
We have summarized the experimental results and characterized the Fisher Information Matrix
for MLE of the localization problem. One of the advantages of our approach is the avoidance of
using Djiksta’s shortest paths algorithm, which takes O(|E| + V log|V |) complexity (where |V | is
the number of vertices in the graph and |E| is the number of edges). Also, at least empirically, we
observe that the proposed algorithm does better compared to MDS-MAP in terms of MMSE.
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(a) (b)

Figure 5: Error as function of ‘n’ and G-D iterations (a)k0 = 0.7 (b)k0 = 0.9

(a) (b)

Figure 6: Re-run experiment: Error as function of ‘n’ and G-D iterations (a)k0 = 0.1 (b)k0 = 0.3

(a) (b)

Figure 7: Re-run experiment: Error as function of ‘n’ and G-D iterations (a)k0 = 0.5 (b)k0 = 0.7
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(a)

Figure 8: Re-run experiment: Error as function of ‘n’ and G-D iterations (a)k0 = 0.9
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